Statistics I:
 Chapter 4: Multivariate Random Variables

Carlos Oliveira

E-mail: carlosoliveira@iseg.ulisboa.pt
ISEG - Lisbon School of Economics and Management

Multivariate random variable: A random variable k - dimensional is a function with domain \mathbf{S} and codomain \mathbb{R}^{k} :

$$
\left(X_{1}, \ldots, X_{k}\right): s \in \mathbf{S} \rightarrow\left(X_{1}(s), \ldots, X_{k}(s)\right) \in \mathbb{R}^{k}
$$

The function $\left(X_{1}(s), \ldots, X_{k}(s)\right)$ is usually written for simplicity as $\left(X_{1}, \ldots, X_{k}\right)$.

Remark: If $k=2$ we have the bivariate random variable or two dimensional random variable

$$
(X, Y): s \in \mathbf{S} \rightarrow(X(s), Y(s)) \in \mathbb{R}^{2}
$$

Joint cumulative distribution function: Let (X, Y) be a bivariate random variable. The real function of two real variables with domain \mathbb{R}^{2} and defined by

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)
$$

is the joint cumulative distribution function of the two dimensional random variable (X, Y).

Example (Dice casting)

Random Experiment: Roll two different dice (one red and one green) and write down the number of dots on the upper face of each die.
Random vector: $\left(X_{\text {red }}, X_{\text {green }}\right)$, where X_{i} is the of dots the i die, with $i=$ green or red.

Some probabilities:

$$
\begin{aligned}
& P\left(X_{\text {red }}=2, X_{\text {green }}=4\right)=\frac{1}{36} \\
& P\left(X_{\text {red }}+X_{\text {green }}>10\right)=\frac{1}{12} \\
& \begin{aligned}
P\left(\frac{X_{\text {red }}}{X_{\text {green }}} \leq 2\right) & =P\left(\frac{X_{\text {red }}}{X_{\text {green }}}=1\right)+P\left(\frac{X_{\text {red }}}{X_{\text {green }}}=2\right) \\
& =\frac{6}{36}+\frac{3}{36}=\frac{1}{4}
\end{aligned}
\end{aligned}
$$

Example (Coin Tossing)

Random experiment: Two different and fair coins are tossed once. Random vector: $\left(X_{1}, X_{2}\right)$, where X_{i} represents the number of heads obtained with coin i, with $i=1,2$.
Some probabilities:

$$
\begin{aligned}
P\left(X_{1}=0, X_{2}=0\right) & =P\left(X_{1}=0, X_{2}=1\right)=P\left(X_{1}=1, X_{2}=0\right) \\
& =P\left(X_{1}=1, X_{2}=1\right)=\frac{1}{4} \\
P\left(X_{1}+X_{2} \geq 1\right) & =\frac{3}{4}
\end{aligned}
$$

Properties of the joint cumulative distribution function:

- $0 \leq F_{X, Y}(x, y) \leq 1$
- $F_{X, Y}(x, y)$ is non decreasing with respect to x and y :
- $\Delta_{x}>0 \Rightarrow F_{X, Y}(x+\Delta x, y) \geq F_{X, Y}(x, y)$
- $\Delta_{y}>0 \Rightarrow F_{X, Y}(x, y+\Delta y) \geq F_{X, Y}(x, y)$
- $\lim _{x \rightarrow-\infty} F_{X, Y}(x, y)=0, \lim _{y \rightarrow-\infty} F_{X, Y}(x, y)=0$ and

$$
\lim _{x \rightarrow+\infty, y \rightarrow+\infty} F_{X, Y}(x, y)=1
$$

- $P\left(x_{1}<X \leq x_{2}, y_{1}<Y \leq y_{2}\right)=$ $F_{X, Y}\left(x_{2}, y_{2}\right)-F_{X, Y}\left(x_{1}, y_{2}\right)-F_{X, Y}\left(x_{2}, y_{1}\right)+F_{X, Y}\left(x_{1}, y_{1}\right)$.
- $F_{X, Y}(x, y)$ is right continuous with respect to x and y :

$$
\lim _{x \rightarrow a^{+}} F_{X, Y}(x, y)=F_{X, Y}(a, y) \text { and } \lim _{y \rightarrow b^{+}} F_{X, Y}(x, y)=F_{X, Y}(x, b)
$$

Example (Coin Tossing)

Random experiment: Two different and fair coins are tossed once.
Random vector: $\left(X_{1}, X_{2}\right)$, where X_{i} represents the number of heads obtained with coin i, with $i=1,2$.
Joint cumulative distribution function:

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right)= \begin{cases}0, & x_{1}<0 \\ 0, & x_{2}<0 \\ \frac{1}{4}, & 0 \leq x_{1}<1,0 \leq x_{2}<1 \\ \frac{1}{2}, & 0 \leq x_{1}<1, x_{2} \geq 1 \\ \frac{1}{2}, & 0 \leq x_{2}<1,0 \leq x_{1}<1 \\ 1, & x_{1} \geq 1, x_{2} \geq 1\end{cases}
$$

The (marginal) cumulative distribution functions of X and Y can be obtained form the Joint cumulative distribution functions of (X, Y) :

- The Marginal cumulative distribution function of X :

$$
F_{X}(x)=P(X \leq x)=P(X \leq x, Y \leq+\infty)=\lim _{y \rightarrow+\infty} F_{X, Y}(x, y) .
$$

- The Marginal cumulative distribution function of Y :

$$
F_{Y}(y)=(Y \leq y)=P(X \leq+\infty, Y \leq y)=\lim _{x \rightarrow+\infty} F_{X, Y}(x, y)
$$

Remark: The joint distribution uniquely determines the marginal distributions, but the inverse is not true.

Example (Coin Tossing)

Random experiment: Two different and fair coins are tossed once. Random vector: $\left(X_{1}, X_{2}\right)$, where X_{i} represents the number of heads obtained with coin i, with $i=1,2$.
Joint distribution function:

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}0, & x_{1}<0 \text { or } x_{2}<0 \\ \frac{1}{4}, & 0 \leq x_{1}<1,0 \leq x_{2}<1 \\ \frac{1}{2}, & 0 \leq x_{1}<1, x_{2} \geq 1 \\ \frac{1}{2}, & 0 \leq x_{2}<1,0 \leq x_{1}<1 \\ 1, & x_{1} \geq 1, x_{2} \geq 1\end{cases}
$$

Marginal distribution function for X_{1} :

$$
F_{X_{1}}\left(x_{1}\right)=\lim _{x_{2} \rightarrow+\infty} F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}0, & x_{1}<0 \\ \frac{1}{2}, & 0 \leq x_{1}<1 \\ 1, & x_{1} \geq 1\end{cases}
$$

Example

Let (X, Y) be a jointly distributed random variable with CDF:

$$
F_{X, Y}(x, y)=\left\{\begin{array}{ll}
1-e^{-x}-e^{-y}+e^{-x-y}, & x \geq 0, y \geq 0 \\
0, & x<0, y<0
\end{array} .\right.
$$

Marginal cumulative distribution function of the random variable X is:

$$
F_{X}(x)= \begin{cases}1-e^{-x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

Marginal cumulative distribution function of the random variable Y is:

$$
F_{Y}(y)=\left\{\begin{array}{ll}
1-e^{-y}, & y \geq 0 \\
0, & y<0
\end{array} .\right.
$$

Independence of jointly distributed random variables

Definition: The jointly distributed random variables X and Y are said to be independent if and only if for any two sets $B_{1} \in \mathbb{R}, B_{2} \in \mathbb{R}$ we have

$$
P\left(X \in B_{1}, Y \in B_{2}\right)=P\left(X \in B_{1}\right) P\left(Y \in B_{2}\right)
$$

Remark: Independence implies that $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$, for any $(x, y) \in \mathbb{R}^{2}$.

Theorem: If X and Y are independent random variables and if $h(X)$ and $g(Y)$ are two functions of X and Y respectively, then the random variables $U=h(X)$ and $V=g(Y)$ are also independent random variables.

Example (Coin Tossing)

Random experiment: Two different and fair coins are tossed once.
Random vector: $\left(X_{1}, X_{2}\right)$, where X_{i} represents the number of heads obtained with coin i, with $i=1,2$.

Are these random variables independent?

$$
F_{X_{1}}\left(x_{1}\right)=\left\{\begin{array}{ll}
0, & x_{1}<0 \\
\frac{1}{2}, & 0 \leq x_{1}<1, \\
1, & x_{1} \geq 1
\end{array} \quad F_{X_{2}}\left(x_{2}\right)= \begin{cases}0, & x_{2}<0 \\
\frac{1}{2}, & 0 \leq x_{2}<1 \\
1, & x_{2} \geq 1\end{cases}\right.
$$

One can easily verify that $F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=F_{X_{1}}\left(x_{1}\right) \times F_{X_{1}}\left(x_{1}\right)$.

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}0, & x_{1}<0 \text { or } x_{2}<0 \\ \frac{1}{4}, & 0 \leq x_{1}<1,0 \leq x_{2}<1 \\ \frac{1}{2}, & 0 \leq x_{1}<1, x_{2} \geq 1 \\ \frac{1}{2}, & 0 \leq x_{2}<1,0 \leq x_{1}<1 \\ 1, & x_{1} \geq 1, x_{2} \geq 1\end{cases}
$$

Example

Let (X, Y) be a jointly distributed random variable with CDF:

$$
F_{X, Y}(x, y)= \begin{cases}1-e^{-x}-e^{-y}+e^{-x-y}, & x \geq 0, y \geq 0 \\ 0, & x<0, y<0\end{cases}
$$

Marginal cumulative distribution function of the random variable X and Y are:

$$
\begin{aligned}
& F_{X}(x)=\lim _{y \rightarrow+\infty} F_{X, Y}(x, y)= \begin{cases}1-e^{-x}, & x \geq 0 \\
0, & x<0\end{cases} \\
& F_{Y}(y)=\lim _{x \rightarrow+\infty} F_{X, Y}(x, y)= \begin{cases}1-e^{-y}, & y \geq 0 \\
0, & y<0\end{cases}
\end{aligned}
$$

X and Y are independent random variables because:

$$
F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)
$$

since

$$
1-e^{-x}-e^{-y}+e^{-x-y}=\left(1-e^{-y}\right)\left(1-e^{-x}\right) .
$$

Let $D_{(X, Y)}$ be the set of of discontinuities of the joint cumulative distribution function $F_{(X, Y)}(x, y)$, that is

$$
D_{(x, Y)}=\left\{(x, y) \in \mathbb{R}^{2}: P(X=x, Y=y)>0\right\}
$$

Definition: (X, Y) is a two dimensional discrete random variable if and only if

$$
\sum_{x, y) \in D_{(x, y)}} P(X=x, Y=y)=1
$$

Remark: As in the univariate case, a multivariate discrete random variable can take a finite number of possible values $\left(x_{i}, y_{j}\right)$, where $i=1,2, \ldots, k_{1}$ and $j=1,2, \ldots, k_{2}$, where k_{1} and k_{2} are finite integers, or a countably infinite $\left(x_{i}, y_{j}\right)$, where $i=1,2, \ldots$ and $j=1,2, \ldots$. For the sake of generality we consider the latter case. That is $D_{(X, Y)}=\left\{\left(x_{i}, y_{j}\right), i=1,2, \ldots, j=1,2, \ldots\right\}$

Joint probability distribution/ function: If X and Y are discrete random variables, then the function given by

$$
f_{X, Y}(x, y)=P(X=x, Y=y)
$$

for $(x, y) \in D_{(X, Y)}$ is called the joint probability function of (X, Y) or joint probability distribution of the random variables X and Y.

Theorem: A bivariate function $f_{X, Y}(x, y)$ can serve as joint probability distribution of the pair of discrete random variables X and Y if and only if its values satisfy the conditions:

- $f_{X, Y}(x, y) \geq 0$ for any $(x, y) \in \mathbb{R}^{2}$
- $\sum_{(x, y) \in D_{(X, Y)}} f_{X, Y}(x, y)=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_{X, Y}\left(x_{i}, y_{j}\right)=1$

Remark: We can calculate any probability using this function. For instance $P((x, y) \in B)=\sum_{(x, y) \in B} f_{X, Y}(x, y)$

Example

Let X and Y be the random variables representing the population of monthly wages of husbands and wives in a particular community. Say, there are only three possible monthly wages in euros: 0,1000 , 2000. The joint probability distribution is

	X	0	1000	2000
Y				
0		0.05	0.15	0.10
1000		0.10	0.10	0.30
2000		0.05	0.05	0.10

The probability that a husband earns 2000 euros and the wife earns 1000 euros is given by

$$
\begin{aligned}
f_{X, Y}(2000,1000) & =P(X=2000, Y=1000) \\
& =0.30
\end{aligned}
$$

Joint cumulative distribution function: If X and Y are discrete random variables, the function given by

$$
F_{X, Y}(x y)=\sum_{s \leq x} \sum_{t \leq y} f_{X, Y}(s, t)
$$

for $(x, y) \in \mathbb{R}^{2}$ is called the joint distribution function or joint cumulative distribution of X and Y.

Marginal probability distribution/function: If Y and X are discrete random variables and $f_{X, Y}$ is the value of their joint probability distribution at (x, y) the function given by

$$
\begin{aligned}
& P(X=x)=\left\{\begin{array}{cc}
\sum_{y \in D_{y}} f(x, y)=\sum_{y \in D_{y}} f_{X, Y}(x, y), & \text { for } x \in D_{x} \\
0, & \text { for } x \notin D_{x}
\end{array}\right. \\
& P(Y=y)=\left\{\begin{array}{cc}
\sum_{x \in D_{x}} f(x, y)=\sum_{x \in D_{x}} f_{X, Y}(x, y), & \text { for } y \in D_{y} \\
0, & \text { for } y \notin D_{y}
\end{array}\right.
\end{aligned}
$$

are respectively is the Marginal probability distribution of the r.v. X and Y, where D_{x} and D_{y} are the range of X and Y respectively.

Statistics I:

Example

$$
\begin{aligned}
P(X=x)= & P(X=x, Y=0)+P(X=x, Y=1000) \\
& +P(X=x, Y=2000) \\
P(Y=y)= & P(X=0, Y=y)+P(X=1000, Y=y) \\
& +P(X=2000, Y=y)
\end{aligned}
$$

Applying these formulas we have:

	X	0	1000	2000	$P(Y=y)$
Y					
0		0.05	0.15	0.10	0.30
1000		0.10	0.10	0.30	0.50
2000	0.05	0.05	0.10	0.20	
$P(X=x)$	0.20	0.30	0.50	1	

$F_{X, Y}(1000,1000)=P(X=0, Y=0)+P(X=0, Y=1000)$
$+P(X=1000, Y=0)+P(X=1000, Y=1000)$
$F_{X, Y}(0,1000)=P(X=0, Y=0)+P(X=0, Y=1000)$

Independence of random variables: Two discrete random variables X and Y are independent if and only if, for all $(x, y) \in D_{X, Y}$,

$$
P(X=x, Y=y)=P(X=x) P(Y=y)
$$

Example

	X	0	1000	2000	$P(Y=y)$
Y					
0		0.05	0.15	0.10	0.30
1000		0.10	0.10	0.30	0.50
2000		0.05	0.05	0.10	0.20
$P(X=x)$	0.20	0.30	0.50	1	

Are these two random variables independent?

$$
P(X=2000, Y=2000)=P(X=2000) \times P(Y=2000)=0.1
$$

Is this sufficient to say that X and Y are independent? NO! $P(X=0, Y=0)=0.05$ but $P(X=0) P(Y=0)=0.06$
thus X and Y are not independent.

Conditional probability

Conditional probability function of Y given X : A conditional probability function of a discrete random variable Y given another discrete variable X taking a specific value is defined as

$$
\begin{aligned}
f_{Y \mid X=x}(y) & =P(Y=y \mid X=x)=\frac{P(Y=y, X=x)}{P(X=x)} \\
& =\frac{f_{X, Y}(x, y)}{f_{X}(x)}, f_{X}(x)>0, \text { for a fixed } x .
\end{aligned}
$$

The conditional probability function of X given Y is defined by

$$
f_{X \mid Y=y}(x)=\frac{f_{X, Y}(x, y)}{f_{y}(y)}, f_{Y}(y)>0
$$

Remarks:

- The conditional probability functions satisfy all the properties of probability functions, and therefore $\sum_{i=1}^{\infty} f_{Y \mid X}\left(y_{i}\right)=1$.
- If X and Y are independent $f_{Y \mid X=x}(y)=f_{y}(y)$ and $f_{X \mid Y=y}(x)=f_{X}(x)$

Statistics I: Chapter 4: Multivariate

Example

Consider the joint probability function

	X	0	1000	2000	$P(Y=y)$
Y					
0		0.05	0.15	0.10	0.30
1000		0.10	0.10	0.30	0.50
2000		0.05	0.05	0.10	0.20
$P(X=x)$	0.20	0.30	0.50	1	

Compute $P(Y=y \mid X=0)$.

$$
\begin{gathered}
P(Y=0 \mid X=0)=\frac{P(Y=0, X=0)}{P(X=0)}=\frac{0.05}{0.2}=0.25 \\
P(Y=1000 \mid X=0)=\frac{P(Y=1000, X=0)}{P(X=0)}=\frac{0.1}{0.2}=0.5 . \\
P(Y=2000 \mid X=0)=\frac{P(Y=2000, X=0)}{P(X=0)}=\frac{0.05}{0.2}=0.25 .
\end{gathered}
$$

Definition: The conditional CDF of Y given X by defined by

$$
F_{Y \mid X=x}(y)=P(Y \leq y \mid X=x)=\sum_{y^{\prime} \in D_{Y} \wedge y^{\prime} \leq y} \frac{P(Y=y, X=x)}{P(X=x)}
$$

for a fixed x, with $P(X=x)>0$.
Remark: It can be checked that $F_{Y \mid X=x}$ is indeed a CDF.
Exercice: Verify that $F_{Y \mid X=x}$ is non-decreasing and and $\lim _{y \rightarrow+\infty} F_{Y \mid X=x}(y)=1$.

Definition: The conditional CDF of Y given X by defined by

$$
F_{Y \mid X=x}(y)=P(Y \leq y \mid X=x)=\sum_{y^{\prime} \in D_{Y \wedge y^{\prime}} \leq y} \frac{P(Y=y, X=x)}{P(X=x)}
$$

for a fixed x, with $P(X=x)>0$.
Remark: It can be checked that $F_{Y \mid X=x}$ is indeed a CDF.
Exercice: Verify that $F_{Y \mid X=x}$ is non-decreasing and and $\lim _{y \rightarrow+\infty} F_{Y \mid X=x}(y)=1$.

1) $F_{Y \mid X=x}(y+\delta)-F_{Y \mid X=x}(y)$

$$
=P(Y \leq y+\delta, X=x)-P(Y \leq y, X=x) \geq 0 .
$$

2) $\lim _{y \rightarrow+\infty} F_{Y \mid X=x}(y)=\lim _{y \rightarrow+\infty} P(Y \leq y \mid X=x)$

$$
=\lim _{y \rightarrow+\infty} \frac{P(Y \leq y, X=x)}{P(X=x)}=\frac{P(Y \leq \infty, X=x)}{P(X=x)}=\frac{P(X=x)}{P(X=x)}=1 .
$$

Example

Consider the conditional probability of Y given that $X=0$ previously deduced:

$$
\begin{aligned}
P(Y=0 \mid X=0) & =\frac{P(Y=0, X=0)}{P(X=0)}=\frac{0.05}{0.2}=0.25 \\
P(Y=1000 \mid X=0) & =\frac{P(Y=1000, X=0)}{P(X=0)}=\frac{0.1}{0.2}=0.5 . \\
P(Y=2000 \mid X=0) & =\frac{P(Y=2000, X=0)}{P(X=0)}=\frac{0.05}{0.2}=0.25 .
\end{aligned}
$$

Then the conditional CDF of Y given that $X=0$ is

$$
F_{Y \mid X=0}(y)=\left\{\begin{array}{ll}
0, & y<0 \\
0.25, & 0 \leq y<1000 \\
0.75, & 1000 \leq y<2000 \\
1, & y \geq 0
\end{array} .\right.
$$

Definition: (X, Y) is a two-dimensional continuous random variable with a joint cumulative distribution function $F_{X, Y}(x, y)$, if and only if X and Y are continuous random variables and there is a non-negative real function $f_{X, Y}(x, y)$, such that

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f_{X, Y}(t, s) d t d s
$$

The function $f_{X, Y}(x, y)$ is the joint (probability) density of X and Y.
Remark: Let A be a set in the \mathbb{R}^{2}. Then,

$$
P((X, Y) \in A)=\iint_{A} f_{X, Y}(t, s) d t d s
$$

Example

Joint probability density function of the two dimensional random variable (P_{1}, S) where P_{1} represents the price and S the total sales (in 10000 units).
Joint density function:

$$
f_{P_{1}, s}(p, s)= \begin{cases}5 p e^{-p s}, & 0.2<p<0.4, \quad s>0 \\ 0, & \text { otherwise }\end{cases}
$$

Joint cumulative distribution function:

$$
\begin{aligned}
F_{P_{1}, s}(p, s) & =P\left(P_{1} \leq p, S \leq s\right) \\
& = \begin{cases}0, & p<0.2 \text { or } s<0 \\
-1+5 p-5 \frac{e^{-0.2 s}-e^{-p s}}{}, & 0.2<p<0.4, s \geq 0 \\
1-5 \frac{e^{-0.2 s}-e^{-0.4 s}}{s}, & p \geq 0.4, s \geq 0\end{cases}
\end{aligned}
$$

To get the CDF we need to make the following computations:

Statistics I: Chapter 4: Multivariate Random Variables

Example

- If $p<0.2$ or $s<0$, then $f_{P_{1}, s}(p, s)=0$ and

$$
P\left(P_{1} \leq p, S \leq s\right)=\int_{-\infty}^{p} \int_{-\infty}^{s} f_{P_{1}, s}(t, u) d t d u=0
$$

- If $0.2<p<0.4$ and $s \geq 0$, then

$$
\begin{aligned}
P\left(P_{1}\right. & \leq p, S \leq s)=\int_{-\infty}^{p} \int_{-\infty}^{s} f_{P_{1}, S}(t, u) d t d u \\
& =\int_{0.2}^{p} \int_{0}^{s} f_{P_{1}, s}(t, u) d t d u=-1+5 p-5 \frac{e^{-0.2 s}-e^{-p s}}{s}
\end{aligned}
$$

- If $p \geq 0.4$ and $s \geq 0$, then

$$
\begin{aligned}
P\left(P_{1}\right. & \leq p, S \leq s)=\int_{-\infty}^{p} \int_{-\infty}^{s} f_{P_{1}, S}(t, u) d t d u \\
& =\int_{0.2}^{0.4} \int_{0}^{s} f_{P_{1}, S}(t, u) d t d u=1-5 \frac{e^{-0.2 s}-e^{-0.4 s}}{s}
\end{aligned}
$$

Theorem: A bivariate function can serve as a joint probability density function of a pair of continuous random variables X and Y if its values, $f_{X, Y}(x, y)$, satisfy the conditions:

- $f_{X, Y}(x, y) \geq 0$, for all $(x, y) \in \mathbb{R}^{2}$
- $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{X, Y}(x, y) d x d y=1$.

Property: Let (X, Y) be a bivariate random variable and $B \in \mathbb{R}^{2}$, then

$$
P((X, Y) \in B)=\iint_{B} f_{X, Y}(x, y) d x d y
$$

Example

Let (X, Y) be a continuous bi-dimensional random variable with density function $f_{X, Y}$ given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{ll}
k x+y, & 0<x<1,0<y<1 \\
0, & \text { otherwise }
\end{array} .\right.
$$

Find k.
Solution: From the first condition, we know that $f_{X, Y}(x, y) \geq 0$. Therefore $k \geq 0$. Additionally,

$$
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{X, Y}(x, y) d x d y=1
$$

This is equivalent to

$$
\int_{0}^{1} \int_{0}^{1} k x+y d x d y=1 \Leftrightarrow \frac{1+k}{2}=1 \Leftrightarrow k=1 .
$$

Example

Let (X, Y) be a continuous bi-dimensional random variable with density function $f_{X, Y}$ given by

$$
f_{X, Y}(x, y)= \begin{cases}x+y, & 0<x<1,0<y<1 \\ 0, & \text { otherwise }\end{cases}
$$

Compute $P(X>Y)$.
Solution: Firstly, we notice that

$$
\begin{aligned}
P(X>Y) & =\int_{0}^{1} \int_{0}^{x}(x+y) d y d x \\
& =\int_{0}^{1} \frac{3}{2} x^{2} d x=\frac{1}{2}
\end{aligned}
$$

Properties: Let (X, Y) be a continuous bivariate random variable. If $f_{X, Y}$ represents the density function of (X, Y) and $F_{X, Y}$ represents respectively joint CDF of (X, Y). Then,

- $f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y}=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial y \partial x}$, almost everywhere.
- Marginal density functions of the random variable X

$$
f_{X}(x)=\int_{-\infty}^{+\infty} f_{X, Y}(x, v) d v
$$

- Marginal density functions of the random variable Y

$$
f_{Y}(y)=\int_{-\infty}^{+\infty} f_{X, Y}(u, y) d u
$$

- Marginal CDF of the random variable X

$$
F_{X}(x)=\lim _{y \rightarrow+\infty} F_{X, Y}(x, y)=\int_{-\infty}^{x} \underbrace{\int_{-\infty}^{+\infty} f_{X, Y}(u, y) d y}_{=f_{X}(u)} d u
$$

- Marginal CDF of the random variable Y

$$
F_{Y}(y)=\lim _{x \rightarrow+\infty} F_{X, Y}(x, y)=\int_{-\infty}^{y} \underbrace{\int_{-\infty}^{+\infty} f_{X, Y}(x, v) d v}_{=f_{Y}(v)} d x .
$$

Example

Joint density function:

$$
f_{P, S}(p, s)= \begin{cases}5 p e^{-p s}, & 0.2<p<0.4, \quad s>0 \\ 0, & \text { otherwise }\end{cases}
$$

Marginal density function of P :

$$
\begin{aligned}
f_{P}(p) & =\int_{-\infty}^{+\infty} f_{P, S}(p, s) d s= \begin{cases}5 \underbrace{\int_{0}^{+\infty} p e^{-p s} d s}_{=1}, & 0.2<p<0.4 \\
0, & \text { otherwise }\end{cases} \\
& = \begin{cases}5, & 0.2<p<0.4 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Marginal cumulative distribution function:

$$
F_{S}(s)=\lim _{p \rightarrow+\infty} F_{P, S}(p, s)= \begin{cases}0, & s<0 \\ 1-5 \frac{e^{-0.2 s}-e^{-0.4 s}}{s^{2}}, & s \geq 0\end{cases}
$$

Definition: If $f_{X, Y}(x, y)$ is the joint probability density function of the continuous random variables X and Y and $f_{Y}(y)$ is the marginal density function of Y, the function given by

$$
f_{X \mid Y=y}(x)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}, x \in \mathbb{R} \quad(\text { for fixed } y), f_{Y}(y)>0
$$

is the conditional probability function of \mathbf{X} given $\{\mathbf{Y}=\mathbf{y}\}$. Similarly if $f_{X}(x)$ is the marginal density function of X

$$
f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}, y \in \mathbb{R}(\text { for fixed } x), f_{X}(x)>0
$$

is the conditional probability function of Y given $\{X=x\}$.
Remark: Note that

$$
P(X \in B \mid Y=y)=\int_{B} f_{X \mid Y=y}(x) d x
$$

for any $B \subset \mathbb{R}$.

Statistics I:

Example

(X, Y) is a random vector with the following joint density function:

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
(y+x) & \text { for }(x, y) \in(0,1) \times(0,1) \\
0 & \text { otherwise }
\end{array} .\right.
$$

Conditional density function of Y given that $X=x$ (with $x \in(0,1)$):

$$
\begin{aligned}
f_{X}(x) & =\int_{0}^{1}(y+x) d y & f_{Y \mid X=x}(y) & =\frac{f_{X, Y}(x, y)}{f_{X}(x)} \\
& =x+\frac{1}{2} & & =\frac{x+y}{x+\frac{1}{2}}, y \in(0,1)
\end{aligned}
$$

Probability of $Y \geq 0.7 \mid X=0.5$

$$
\begin{aligned}
P(Y \geq 0.7 \mid X=0.5) & =\int_{0.7}^{1} f_{Y \mid X=0.5}(y) d y \\
& =\int_{0.7}^{1}(y+0.5) d y=0.405 .
\end{aligned}
$$

Remark:

- The conditional density functions of X and Y verify all the properties of a density function of a univariate random variable.
- Note that we can always decompose a joint density function in the following way

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y \mid X=x}(y)=f_{Y}(y) f_{X \mid Y=y}(x)
$$

- If X and Y are independent $f_{Y \mid X=x}(y)=f_{Y}(y)$ and $f_{X \mid Y=y}(x)=f_{X}(x)$.

Example

Consider the conditional density function of Y given that $X=x$ (with $x \in(0,1)$):

$$
f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{x+y}{x+\frac{1}{2}}, y \in(0,1)
$$

$f_{Y \mid X=x}$ is indeed a density function:

$$
f_{Y \mid X=x}(y) \geq 0 \quad \text { and } \quad \int_{0}^{1} \frac{x+y}{x+\frac{1}{2}} d y=1
$$

Example

Consider the conditional density function of Y given that $X=x$ (with $x \in(0,1)$) and the marginal density function of Y.

$$
\begin{aligned}
f_{Y \mid X=x}(y) & =\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{x+y}{x+\frac{1}{2}}, y \in(0,1) \\
f_{Y}(y) & =y+\frac{1}{2}, y \in(0,1)
\end{aligned}
$$

The random variables are not independent because

$$
f_{Y \mid X=x}(y) \neq f_{Y}(y), \quad \text { for some } y \in(0,1) .
$$

Definition: The conditional CDF of Y given X by defined by

$$
F_{Y \mid X=x}(y)=\int_{-\infty}^{y} f_{Y \mid X=x}(s) d s=\int_{-\infty}^{y} \frac{f_{Y, X}(s, x)}{f_{X}(x)} d s
$$

for a fixed x, with $f_{X}(x)>0$.
Remark: It can be checked that $F_{Y \mid X=x}$ is indeed a CDF.

Example

Consider the conditional density function of Y given that $X=x$ (with $x \in(0,1)$):

$$
f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{x+y}{x+\frac{1}{2}}, y \in(0,1) .
$$

For $x \in(0,1)$, the conditional cumulative density function is given by:

$$
F_{Y \mid X=x}(y)= \begin{cases}0, & y<0 \\ \frac{y(2 x+y)}{1+2 x}, & 0 \leq y<1 \\ 1, & y \geq 1\end{cases}
$$

where, $\frac{y(2 x+y)}{1+2 x}=\int_{0}^{y} \frac{x+s}{x+\frac{1}{2}} d s$.

